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and sensory inputs can emerge, giving rise to what is com-
monly referred to as prediction errors. Prediction errors 
thus play a central role in predictive processing, as they 
can signal a relevant change in the environment. However, 
prediction errors can also arise from environmental noise. 
An effective adaptive strategy is then to distinguish relevant 
prediction errors–the ones that signal that prior beliefs need 
to be updated to optimize future predictions–from irrelevant 
prediction errors, after which any priors’ update could be 
unfruitful. A mechanism called precision weighting can 
be used to model the significance of each prediction error 
(Friston, 2009, 2010). In a stable environment, precision 
weighting tends to be low, leading to prediction errors being 
ignored. Conversely, in an uncertain and volatile environ-
ment, precision weighting tends to be high, amplifying the 
impact of prediction errors (Behrens et al., 2007). In the lat-
ter case, increased sensory load and active inference, such 

Introduction

Predictive processing theories conceptualize perception as 
an active process that arises from the interplay between sen-
sory input and predictions about the environment (Friston, 
2010; Rao & Ballard, 1999). Human brain consistently relies 
on prior knowledge to anticipate future events. However, in 
changing environments, discrepancies between predictions 
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Abstract
Purpose Predictive coding theories posit that autism is characterized by an over-adjustment to prediction errors, resulting 
in frequent updates of prior beliefs. Atypical weighting of prediction errors is generally considered to negatively impact the 
construction of stable models of the world, but may also yield beneficial effects. In a novel associative learning paradigm, 
we investigated whether unexpected events trigger faster learning updates in favour of subtle but fully predictive cues in 
autistic children compared to their non-autistic counterparts. We also explored the relationship between children’s language 
proficiency and their predictive performances.
Methods Anticipatory fixations and explicit predictions were recorded during three associative learning tasks with deter-
ministic or probabilistic contingencies. One of the probabilistic tasks was designed so that a fully predictive but subtle cue 
was overshadowed by a less predictive salient one.
Results Both autistic and non-autistic children based their learning on the salient cue, and, contrary to our predictions, 
showed no signs of updating in favour of the subtle cue. While both groups demonstrated associative learning, autistic chil-
dren made less accurate explicit predictions than their non-autistic peers in all tasks. Explicit prediction performances were 
positively correlated with language proficiency in non-autistic children, but no such correlation was observed in autistic 
children.
Conclusion These results suggest no over-adjustment to prediction errors in autistic children and highlight the need to con-
trol for general performance in cue-outcome associative learning in predictive processing studies. Further research is needed 
to explore the nature of the relationship between predictive processing and language development in autism.
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as attentional exploration, can help reduce uncertainty by 
enabling the search for new information, which can then be 
used to update one’s beliefs (Friston et al., 2012, 2016).

Several authors proposed that main features of autism—
such as sensory overload, perceptual atypicalities, and 
motor or social difficulties—stem from an imbalance in 
precision weighting (Chrysaitis & Seriès, 2023; Van de 
Cruys et al., 2014; for a review see Cannon et al., 2021). 
One view is that precision weighting is atypically high and 
inflexible in autistic individuals (Van de Cruys et al., 2014), 
while another is that autistic individuals overestimate the 
volatility of their environment, leading to poor adapta-
tion of precision weighting (Lawson et al., 2017). On both 
views, autistic individuals would allocate excessive weight 
to their prediction errors, resulting in an elevated sensory 
load and to a high rate of prior updates in situations where 
non-autistic individuals would have maintained their priors 
unchanged. Excessive prior updating may lead autistic indi-
viduals to perceive the environment as unpredictable and 
chaotic. Repetitive behaviours and narrow interests, which 
are among the core characteristics of autism, may therefore 
emerge as coping mechanisms to impose structure on an 
unstable world (Van de Cruys et al., 2014).

The models that posit atypical predictive processing in 
autistic adults are supported by various types of experimen-
tal evidence: higher surprise reactions to unexpected events 
(van Laarhoven et al., 2020), poor adaptation of precision 
weighing to changes in the environment (Goris et al., 2018; 
Lawson et al., 2017; Sapey Triomphe et al., 2021; Thillay 
et al., 2016), and higher learning rates and faster learning 
updates in uncertain situations (Allenmark et al., 2021; 
Crawley et al., 2020; Goris et al., 2022). At the same time, 
several such studies found no group differences (Manning 
et al., 2017; Van de Cruys et al., 2021; Ward et al., 2021).

Early theories of atypical predictive coding in autism 
pointed to a potential connection with strengths sometimes 
observed in this population, such as enhanced perceptual 
abilities or systemizing skills (Van de Cruys et al., 2014). 
Yet, an atypically high rate of learning updates has mostly 
been described as negatively impacting the construction 
of relevant and stable priors (Crawley et al., 2020; Law-
son et al., 2017). However, the detrimental role of over-
adjustment to prediction errors could be task-dependent and 
mostly apparent in situations where only one cue is predic-
tive of each outcome with a probability superior to 0.5. For 
instance, in a learning phase that involves two cues (A and 
B) and two outcomes (X and Y), where cue A is predictive 
of outcome X 80% of the time (ProbA➔X = 0.8) and predic-
tive of outcome Y 20% of the time (ProbA➔Y = 0.2), while 
ProbB➔Y = 0.8 and ProbB➔X = 0.2, then A➔Y and B➔X 
would be treated as oddball events and induce prediction 
errors. Therefore, any learning update attempts after these 

errors would be unfruitful and detrimental for A➔X and 
B➔Y associative strengths since the only other available 
associations (A➔Y and B➔X) are only 20% predictive.

Therefore, the potential benefits of a higher rate of prior 
update on learning in autistic individuals could be observed 
using paradigms with more complex mappings than the 
classically used straightforward one-to-one cue-outcome 
associations. One way of exploring that possibility could be 
investigating the consequences of mismatches between the 
predictiveness of cues and their physical salience. If a phys-
ically salient cue overshadows a subtler but more predictive 
cue, autistic participants should update their learning based 
on the subtler cue more rapidly than non-autistic individu-
als after experiencing the unexpected outcome of the salient 
cue. The hypothetical positive effect of precision imbalance 
on the learning of subtle, yet more predictive associations 
aligns with the observation of enhanced abilities to detect 
repetitive patterns and highly regular structures in autistic 
individuals and adults with elevated autistic traits (Baron-
Cohen et al., 2003; Goris et al., 2020; Mottron et al., 2013). 
Using different learning paradigms may, therefore, highlight 
alternative rather than impaired learning outcomes and con-
tribute to a deeper understanding of autism symptomatology.

Atypical language development is a core characteristic 
of autism that stands to gain significant insights from the 
examination of precision imbalance (Weismer & Saffran, 
2022). Language delays affect up to 50% of children on 
the autism spectrum, with 20–30% never achieving func-
tional language (Wodka et al., 2013). Linguistic disabili-
ties observed in autism include delays in early vocabulary 
development (Luyster et al., 2008; Weismer & Kover, 2015), 
atypical word mapping learning (Hartley et al., 2014), over-
specified learning of lexical category (Church et al., 2010; 
Gastgeb & Strauss, 2012; Soulières et al., 2007) as well as 
grammatical and pragmatic impairments (Eigsti et al., 2011; 
Wittke et al., 2017).

Arguably, the categorisation and generalisation of lexi-
cal information requires a selective rejection of prediction 
errors. Assigning too much weight to non-significant differ-
ence between events in the same category could lead to an 
overfitting of lexical or categorical learning, preventing the 
creation of higher-order representations. Moreover, if atypi-
cal predictive coding leads to a different way of prioritizing 
cues —such as the preference for subtle yet fully predictive 
cues in autistic individuals and salient but less predictive 
cues in non-autistic individuals—it could have a differential 
impact on word mapping and lexical acquisition in general. 
In the same vein, atypical attentional selectivity favouring 
local cues over global information has been shown to corre-
late with poor interaction and communication skills in autis-
tic individuals (Klin et al., 2002; Yoon et al., 2024).

1 3



Journal of Autism and Developmental Disorders

Some studies provide neural evidence of the link 
between prediction errors and typical language comprehen-
sion (Ryskin & Nieuwland, 2023; Wang et al., 2023). Other 
studies have focused on the relationship between predictive 
processing and typical language abilities, linking receptive 
vocabulary and mismatch response amplitudes in 12-month-
olds (Ylinen et al., 2017), or between vocabulary size and 
predictive gaze abilities in children and adults (Borovsky et 
al., 2012; Mani & Huettig, 2012). In a similar vein, Reuter 
and colleagues (2019) observed that prediction errors posi-
tively influenced word learning in 3- to 5-year-olds, while 
Reuter et al. (2018) reported a relation between learning 
updates in nonverbal tasks and vocabulary level at this age. 
Studies have also shown that atypical predictive processing 
can affect the learning of grammatical rules and the devel-
opment of syntactic awareness in populations with devel-
opmental language disorders (Hestvik et al., 2022; Jones & 
Westermann, 2021).

The few studies to have explored the interaction between 
predictive processing and language in autism have focused 
on incremental language processing, using object-focused 
attention as an indicator of sentence anticipation. These 
studies have demonstrated accurate predictions (Bavin et al., 
2016; Zhou et al., 2019) and a positive relationship between 
predictions and general language abilities in both autistic 
and non-autistic groups (Prescott et al., 2022; Venker et al., 
2019). While the predictive framework seems promising 
for understanding atypical language development in autism 
(Weismer & Saffran, 2022), no study, to our knowledge, has 
explored the link between predictive update processing and 
language in autistic individuals.

This study focused on children aged between 9 and 16, 
a population expected to show variability in language skills 
while being able to comprehend the instructions and main-
tain their attention throughout the tasks. We employed a 
novel associative learning paradigm that introduced com-
petition between a physically salient cue and a subtler but 
more predictive one. We hypothesized that if a salient cue, 
which was 80% predictive of an outcome, overshadowed a 
subtler cue that was 100% predictive of the same outcome, 
autistic participants would demonstrate greater attentional 
exploration after having experienced unexpected salient 
associations. We also expected autistic participants to 
update their learning based on the subtler cue more rapidly 
than non-autistic individuals. Additionally, we hypothesized 
positive associations between participants’ general language 
abilities, vocabulary levels, and overall predictive accuracy. 
Conversely, we predicted a negative correlation between the 
number of unfruitful update attempts and participants’ lan-
guage indexes.

We recorded participants’ explicit predictions as well as 
their anticipatory fixations. This bi-variable design aimed to 

address recent findings suggesting that atypical prediction 
processing in autism may be more prominent in low-level 
predictive processing, such as predictive eye movements, 
or in tasks where the association of cues with outcomes is 
not explicitly stated (Cannon et al., 2021; Amoruso et al., 
2019). Moreover, given the challenges associated with test-
ing autistic children and widespread data loss, particularly 
when applying a new experimental paradigm, combining 
explicit and implicit responses should maximize the data 
reliability.

Methods

Participants

The sample was composed of twenty-three autistic chil-
dren (9 female; age range 9–16 years, M = 11, SD = 2.06), 
and twenty-three non-autistic children (11 female; age 
range 9–12 years, M = 10.5; SD = 1.08). Total Intelligence 
Quotient scores significantly differ between autistic par-
ticipants (M = 96.7, SD = 17.9) and non-autistic participants 
(M = 112, SD = 8.77). The influence of participants’ IQ 
scores on our main dependent variables was controlled for 
throughout our analyses. Participants’ detailed demographic 
information is available in Appendix 1.

Participants’ Recruitment

Participants were recruited through various channels, 
including our lab’s database, distribution of flyers, social 
media outreach, and direct engagement with primary 
schools (for the non-autistic group) and special education 
schools (for the autistic group). Inclusion criteria for the 
non-autistic group were: French as at least one primary lan-
guage and the absence of known neurodevelopmental or 
psychiatric conditions. For autistic participants, inclusion 
criteria were French as at least one primary language and 
an official diagnosis of Autism Spectrum Disorder from a 
multidisciplinary team. All participants had either normal 
vision or corrected-to-normal vision and normal hearing. 
All participants received a 10 euros bookshop voucher as 
compensation for taking part in the study. Written consent 
was obtained from all participants and their parents. This 
study was approved by Erasme-ULB Hospital-Faculty Eth-
ics Committee (register number CCB: B4062022000135).
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Dual blocks, while the Probabilistic block featured two dif-
ferent shapes and two different filling patterns. From now 
on, the auditory and visual stimuli from the Probabilistic 
block will be indexed with the Prob super-script (details 
on stimuli in Appendix 1). Following Byrom and Murphy 
(2019), we considered the shapes of our visual stimuli (S1 
and S2) as the salient dimension and the filling patterns of 
these stimuli (P1 and P2) as the subtle physical dimension. 
Shapes and filling patterns could then be associated in four 
different ways: S1P1, S1P2, S2P1 and S2P2. As shown in 
Fig. 1, the two visual stimuli presented simultaneously on 
the left and right halves of the screen could be either [S1P1 
and S2P2] or [S1P2 and S2P1], depending on the block. All 
visual stimuli measured 380 by 525 pixels, each covering 
10% of the 1920 × 1080-pixel screen (refer to Appendix 1 
for technical equipment information).

Design

Intra-trial Design

Participants’ learning was assessed through their explicit 
predictions about the outcome and their anticipatory gazes. 
Each trial consisted in four different phases, illustrated in 
Fig. 2. During the first phase, the two visual stimuli were 
presented simultaneously, one on each side of the screen, 
with the sides counterbalanced across trials. After 1400 ms, 
one of the two sounds was played for 400 ms. Next, the 
anticipation phase began, during which both visual stimuli 
remained visible on the screen. During this anticipation 
phase, participants were required to predict which stimulus 
would move by pressing the left or right arrow on their key-
board. When a key was pressed, the sound-associated stim-
ulus animated for 1920 ms; otherwise, animation initiated 
after 6 s. After that animation phase, the two visual stimuli 
disappeared, and the next trial started. Each block consisted 
of 32 trials and lasting about 3 min on average. Participants’ 
gazes were recorded during each of the 32 testing trials, 

Materials

Task

We presented participants with two visual stimuli, charac-
terized by their overall shape and a subtle filling pattern. In 
each trial, we played one of two distinct sounds after one 
of the visual stimuli became animated. Participants were 
explicitly asked to predict which stimuli would animate 
using the keyboard, and their gazes were recorded between 
the onset of the sound and their response. The experiment 
consisted of three blocks detailed in Table 1 (for more infor-
mation, refer to the Block Design section in Appendix 1). In 
the Deterministic block, each sound was fully predictive of 
the animation of one of the two stimuli. In the Probabilistic 
block, each sound was predictive of the animation of one 
of the two stimuli with a contingency of 80:20. The Dual 
block also contained 20% of oddball trials, but unlike in 
the Probabilistic block, the patterns between the two shapes 
were swapped during the oddball trials. Therefore, in the 
Dual block, the sound-shape association also predicted the 
animation of one of the two stimuli in an 80:20 ratio. How-
ever, the sound-pattern association predicted the animation 
of one of the two stimuli with a probability of 100:0.

Stimuli

Within each block, two asemantic 400 ms sounds (A1 and 
A2), which were easily distinguishable from each other, sig-
nalled the upcoming animation of one of two visual stimuli. 
Visual animations were thus used both as outcomes, and as 
reinforcement inducing participants to make anticipatory 
fixations on the about-to-move stimulus (details about the 
nature of the animations are provided in Appendix 1). As 
illustrated in Fig. 1, the two visual stimuli consisted of two 
non-semantic shapes (S1 and S2), each filled with a pattern 
oriented either upwards (P1) or downwards (P2). The same 
shapes and stimuli were used in the Deterministic and the 

Table 1 Block designs. A1 and A2 are auditory cues, S1 and S2 are shapes and P1 and P2 are filling patterns. The animation or absence of anima-
tion of each visual stimulus (the outcome) is respectively represented by a (+) or a (-)

Associations Trials Sound Visual stimulus
Deterministic block Deterministic association standard

32 / 32
A1
A2

S1P1 +
S1P1 –

&
&

S2P2 –
S2P2 +

oddball
0 / 32

/

Dual block Dual association
predictiveness:
sound-pattern 100%
sound-shape 80%

standard
26 / 32

A1
A2

S1P1 +
S1P1 –

&
&

S2P2 –
S2P2 +

oddball
6 / 32

A1
A2

S1P2 –
S1P2 +

&
&

S2P1 +
S2P1 –

Probabilistic block Probabilistic association standard
26 / 32

A1 Prob

A2 Prob
S1 Prob P1 Prob  +
S1 Prob P1 Prob –

&& S2 Prob P2 Prob –
S2 Prob P2 Prob +

oddball
6 / 32

A1 Prob

A2 Prob
S1 Prob P1 Prob  –
S1 Prob P1 Prob  +

&
&

S2 Prob P2 Prob +
S2 Prob P2 Prob –
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in part for the Verbal Comprehension Index, was used to 
assess participants’ lexical proficiency.

We used the core language index of the Clinical Evalu-
ation of Language Fundamentals - Fifth Edition (CELF-5, 
Wiig et al., 2013) to measure participants general language 
skills. CELF-5 features a range of subtests and composite 
scores assessing language skills in individuals aged 5 to 18. 
Subtests cover receptive and expressive language domains, 
including comprehension, vocabulary, and sentence struc-
ture. The composite Core Language Score, provide an 
overall profile of language abilities, with higher scores indi-
cating better language proficiency.

beginning with the onset of the sound and extending until a 
key press occurred. If no key was pressed, the eye recording 
continued until the next trial.

Psychometric Measures

Participants’ Intellectual Quotient (IQ) was assessed using 
the full version of the Wechsler Intelligence Scale for Chil-
dren (WISC-V; Wechsler, 2014). The WISC-V is used to 
assess the cognitive abilities of children aged 6 to 16 and 
consists of 10 primary subtests that contribute to five main 
composite scores: Verbal Comprehension Index, Visual 
Spatial Index, Fluid Reasoning Index, Working Memory 
Index, and Processing Speed Index. These composite scores 
can provide an overall assessment of a child’s cognitive 
abilities. The WISC-V Vocabulary subset, which accounts 

Fig. 1 Visual stimuli used in the 
Deterministic and Dual block. 
Each stimulus has one of two 
shapes (S1 and S2) and is filled 
with one of two patterns (P1 and 
P2). The two stimuli shown in 
A were used in all trials of the 
Deterministic block and in the 
standard trials of the Dual block. 
The two stimuli shown in B were 
used during the oddball trials of 
the Dual block
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Sessions

The experiment was conducted across two sessions, with 
a minimum gap of one day and a maximum of one week 
between them. At the onset of the initial session, we provided 
parents with questionnaires and consent forms. Then we set 
up the computer and eye-tracking equipment while familiar-
izing with the participant. The participant then completed 
the Probabilistic block, followed by the Visual Puzzle and 
Picture Span subtests of the WISC-V. Afterwards, they had 
a 15-minute break, during which they were free to choose 
any activity except screen-related ones, and after which they 
completed the Deterministic block, immediately followed 
by the Dual block. The remaining WISC subtests were then 
administered, and we collected the questionnaires. The brief 
interval between the Probabilistic and Deterministic blocks 
aimed to prevent fatigue and disengagement in autistic 
participants, as well as to avoid undesired direct learning 
generalization between the Probabilistic and the two other 
blocks. The assessment of the CELF-5 took place during 
the second session before participants completed two other 
learning tasks not related to that study.

The sessions were conducted in an experimental room 
with lighting optimized for eye-tracking studies. All details 
regarding eye-tracking data processing, data preparation, 
instructions and procedures can be found in Appendix 1.

Questionnaires

Parents were asked to complete the Children’s Commu-
nication Checklist (CCC-2) (Bishop, 2003), which is a 
comprehensive tool designed to assess pragmatic and com-
munication skills in individuals aged 4 to 16 years. This 
checklist evaluates various domains of communication, 
including speech, semantics, and social aspects such as ini-
tiating and maintaining conversations, understanding non-
literal language, and using appropriate gestures. We used the 
General Communication Composite score (GCC), which is 
employed to identify children with a high likelihood of hav-
ing clinically significant communication difficulty. Higher 
GCC scores indicate better communicative skills.

Finally, parents completed our laboratory questionnaire, 
adapted from the revised Family Affluence Scale (Currie et 
al., 2008) which serves as a proxy for the participant’s socio-
economic background. It includes an education score on a 
0- to 6-point scale, ranging from 0 (indicating no primary 
school achievement) to 6 (representing a doctoral degree), 
and an economic status on a 0- to 13-point scale, where 0 
corresponds to very low economic status, and 13 reflects 
very high economic status. The addition of these two scores 
is used and an index of families’ Socio-Economic Status 
(SES).

Fig. 2 Example of a trial from the Deterministic block
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Moreover, to further investigate participants’ inclination 
to predict the outcome based on the pattern of the stimuli 
during the Dual block, we created a variable called ‘Pattern-
based prediction’. This variable was coded as 1 if a par-
ticipant accurately predicted the outcome during the oddball 
trial, the trial before, and the following trial; otherwise, it 
was coded as 0. ‘Pattern-based prediction’ is the sum of 1 
per participant and can vary between 0 and 5.

Analytic Plan

All analyses were conducted using R (R Core Team, 2020). 
Two sets of analyses were conducted on participants’ antici-
patory fixations and explicit predictions. First, we used 
Generalized Additive Models (GAMs) to investigate the 
nonlinear impact of trials on these variables as well as any 
potential differences between autistic and non-autistic chil-
dren regarding their learning curves. Participants’ intercept 
was added as random effect. GAMs were implemented 
using the mgcv package (version 1.8–40, Wood, 2017).

Second, we sought to determine whether participants 
attentional exploration and prediction accuracy increased 
across standard and oddball trials and if that evolution dif-
fered between trials’ categories and groups. We used Gen-
eralized Linear Mixed Models (GLMMs) to analyse the 
impact of Category (standard or oddball), Group, Trial, and 
Category X Group and Category X Group X Trial interac-
tions on participants’ gaze allocation ratio and prediction 
accuracy. The models used for the analysis of the Determin-
istic block did not include the ‘Category’ variable, as the 
block exclusively comprises standard trials. Participants’ 
intercept was added as random effect. Generalized Linear 
Mixed Models (GLMMs) set to beta logistic regression 
were assessed using the lme4 package (version 2.4, Bates et 
al., 2015) to analyse participants’ gaze allocation ratio, and 
GLMMs set to binomial logistic regression were assessed to 
analyse participants’ accuracy scores.

The significance of each fixed factor of the GAMs and 
GLMMs was estimated by running likelihood ratio tests to 
compare the fit of the model with a model without the factor 
under consideration, but with an otherwise identical struc-
ture (Barr, 2008). We used a stepwise method to compare 
our models starting from the null model and incrementally 
augmenting it with the different independent variables, and 
their interaction, keeping the random structure unchanged, 
until we reached the theoretically motivated maximal 
model. We assessed the simple effect of control variables by 
incorporating them separately as fixed factors into the GLM 
maximal models and evaluating whether they enhanced the 
model fit. Post-hoc comparisons of least-square means were 
carried out on the best-fitting models using the emmeans 

Variables

Anticipatory fixations toward each stimulus were recorded 
between the onset of the sound and the onset of the anima-
tion. We calculated fixation time proportion on the to-be-
animated Area Of Interest (AOI) for each trial by dividing 
participants’ fixation time on that AOI by their total fixation 
time on both AOIs. This gaze allocation ratio was used as 
a dependant variable. A gaze ratio above 0.5 signals more 
fixations on the animated AOI, while below 0.5 indicates a 
preference for the non-animated AOI.

Participants’ explicit prediction accuracy (1 = predicted 
that the to-be-animated stimulus was about to move, 
0 = predicted that the non-animated stimulus was about to 
move) was used as a second dependent variable. Absence 
of answers were coded as NAs. An average explicit predic-
tion score above 0.5 indicates predictions for movement in 
the animated AOI, while below 0.5 suggests predictions for 
movement in the non-animated AOI.

The main independent variables were; Group (autis-
tic or non-autistic), Trial (the succession of the 32 trials), 
Category of trials (standard or oddball). Additionally, core 
CELF 5 index score was used as an independent variable to 
measure the effect of participants’ general language level 
on the dependent variables. The General Communication 
Composite (GCC) index from CCC-2 questionnaire was 
used as an independent variable to measure the effect of 
participants’ communication abilities on the dependent vari-
ables. Participants’ vocabulary standard score from WISC-
V was used as an independent variable to measure the effect 
of participants’ word knowledge on the dependent variables. 
And finally, participants’ Total IQ score, age and SES were 
used as control variables to measure the effect of partici-
pants’ general intelligence, chronological development and 
socio-economic status on the dependent variables.

To further explore participants’ inclination to change 
their predictive strategy after the oddball trials of the Proba-
bilistic block, we introduced a variable called ‘Unfruitful 
Update Attempt’. This variable is derived from fifteen tri-
als organized into five groups, each comprising three con-
secutive trials: the trial before the oddball trial, the oddball 
trial itself, and the trial following it. For instance, group one 
includes the 6th, 7th (oddball), and 8th trials, while group 
two comprises the 13th, 14th (oddball), and 15th trials, and 
so on. The last oddball trial was excluded from the analysis 
because it was not followed by any subsequent trials. The 
variable was coded as 1 if the participant accurately pre-
dicted the trial before the oddball trial, made an inaccurate 
prediction during the oddball trial, and another inaccurate 
prediction during the subsequent trial; otherwise, it was 
coded as 0. ‘Unfruitful Update Attempt’ is the sum of 1 per 
participant and can vary between 0 and 5.
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Finally, we hypothesized positive associations between 
participants’ general language abilities, vocabulary levels, 
and overall predictive accuracy. Conversely, we predicted 
a negative correlation between the number of unfruitful 
update attempts during the Probabilistic block and partici-
pants’ language indexes.

Results

Probabilistic Block

Gaze

The best-fitting GAM included the Trial smooth effect (LRT 
(22) = 56.53, p < .001); the fitted curve in Fig. 3a shows that 
anticipatory fixations on the animated stimulus increased 
between oddball trials and drop during the 1st, 4th, 5th and 
6th oddball trials.

The best-fitting GLMM revealed a significant effect of 
Category (χ² (1) = 43.48, p < .001); adding participants’ total 
IQ scores as fixed factor significantly improved this model fit 
(χ² (1) = 0.534, p < .05), with a positive effect of IQ on gaze 
ratio (z = 1.97, p < .05). As illustrated in Fig. 3a, there were 
higher correct anticipatory fixations during the standard tri-
als compared to the oddball trials, which was confirmed by 
pairwise post-hoc comparisons (z = 6.67, p < .001).

Explicit Prediction

The best-fitting GAM included Trial (LRT (31) = 253, 
p < .001). The fitted curve in Fig. 3b is above 0.5 during the 
standard trials, which shows that participants correctly pre-
dicted the animation of the animated stimulus during these 
trials. However, the curve drops during each oddball trial 
and the 95% confidence intervals go well below 0.5 except 
for the last oddball trial, which is consistent with partici-
pants having wrongly anticipated the animation the of the 
non-animated stimulus during these oddball trials.

The best-fitting GLMM included the Category X Group 
interaction (χ² (1) = 4.53, p < .05). Post-hoc pairwise com-
parisons revealed a greater prediction accuracy during the 
standard trials compared to the oddball trials (z = 8.00, 
p < .001) and a greater Category effect in the non-autistic 
group compared to the autistic group (z = 2.13, p < .05). 
Autistic children displayed lower accuracy during the stan-
dard trials compared to non-autistic children (z = -2.83, 
p < .05), but there was no group difference for the oddball 
trials (z = 0.17, p = .998); see Fig. 4b for fitted accuracy 
values.

For the autistic group, stepwise comparisons of GLMMs 
revealed that the inclusion of Vocabulary, GCC or CELF did 

package (version 1.5.1, Lenth, 2020), with Tukey adjust-
ment for multiple comparisons.

Autistic children showed significantly lower scores in all 
language indexes compared to non-autistic children (refer to 
participants’ demographic information in Appendix 1). Due 
to the collinearity effect hindering the interpretation of inter-
actions, separate analyses were conducted for autistic and 
non-autistic groups to assess the effects of CELF, CCG, and 
Vocabulary on dependent variables. These analyses were 
performed individually, concentrating on standard trials in 
the Probabilistic and Dual blocks, and considering all trials 
in the Deterministic block. Only participants with complete 
language indexes were included in these analyses (detailed 
information on missing data is provided in Appendix 1). 
When a language variable improved the model fit, we intro-
duced IQ and SES as additional fixed factors to account for 
its potential influence on the observed relationship. There-
fore, we used GLMMs with Vocabulary, CCG, CELF, IQ 
and SES as fixed effects, and participants’ intercepts as ran-
dom effects.

We investigated the impact of Group on ‘Unfruitful 
Update Attempt’ during the Probabilistic block and on 
‘Pattern-based Prediction’ during the Dual block using 
GLMMs set to Poisson regressions or, in case of over-
dispersed counts, set to negative binomial regression. The 
negative binomial regressions were performed using the 
glm.nb function from the MASS package (version: 7.3–56, 
Venables, 2022). The effects of language indexes on these 
variables were investigated by conducting separate analyses 
for autistic and non-autistic individuals. The fixed effects 
of Vocabulary, CCG, and CELF were analysed individually.

For clarity and space considerations, only the best-fitting 
models and significant post-hoc comparisons will be pre-
sented in the following section. Full model descriptions are 
available in Supplementary Material 1.

Predictions

Based on previously documented precision imbalance in 
autism, we expected that prediction errors experienced dur-
ing the Probabilistic block, would lead autistic children to 
make a higher number of unfruitful update attempts, and 
therefore provoke less accurate predictions during that 
block. During the Dual block, we expected that the sound/
shape association would initially overshadow the subtle 
sound/filler pattern association (see, Byrom & Murphy, 
2019), and hence lead participants to make prediction errors 
during the first oddball trials. Additionally, we predicted that 
these prediction errors would prompt autistic children to 
explore the stimuli, grasp the predictive value of the subtler 
sound/filling pattern cue, and update their learning based on 
that subtle cue more rapidly than non-autistic children.

1 3



Journal of Autism and Developmental Disorders

Deterministic Block

Gaze

The best-fitting GAM included no smooth terms nor inter-
actions (all p > .064) suggesting that the impact of Trial on 
participants’ gaze allocation ratio is linear, and that there are 
no significant differences between groups regarding these 
anticipatory gaze curves.

The best-fitting GLMM included no fixed effect or inter-
action (all p > .065), suggesting that participants’ gaze ratio 
did not significantly evolve across trials and that the slopes 
did not differ between groups. Figure 5a shows that all par-
ticipants exhibited longer fixations on the to-be-animated 
stimulus in comparison to the non-animated stimulus dur-
ing all trials.

not enhance the model fit (all p > .378). Turning to the non-
autistic group, stepwise comparisons of GLMMs showed 
that Vocabulary significantly increased the model fit (χ² 
(1) = 3.94, p < .05), while GCC and CELF did not (both 
p > .829). Vocabulary scores had a positive effect on non-
autistic participants’ explicit predictive accuracy (z = 2.07, 
p < .05).

Unfruitful Update Attempt

Turning to the ‘Unfruitful update attempt’ variable, step-
wise comparisons of GLMMs showed that the inclusion of 
Group as predictor did not significantly improve the model 
fit (LR (1) = 0.095, p = .758). For both autistic and non-
autistic groups, incorporating Vocabulary, GCC, or CELF 
did not improve the model fit (autistic group: all p > .088; 
non-autistic group: all p > .277).

Fig. 3 Probabilistic block. (a) Mean gaze ratios, per trials, by group; 
vertical lines correspond to Standard Error of Means (SEMs). The line 
in bold corresponds to fitted gaze ratio adjusted curve, with the shad-
owed ribbon standing for 95% CIs. (b) Mean prediction accuracy, per 

trials, by group; vertical lines correspond to SEMs. The line in bold 
corresponds to fitted explicit prediction accuracy adjusted curve, with 
the shadowed ribbon standing for 95% CIs. Each vertical black line 
represents an oddball trial
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compared to autistic children (z = 2.73, p < .01). As shown 
in Fig. 5b all participants were accurate well above chance, 
with higher accuracy in the non-autistic participant.

For the autistic group, stepwise comparisons of GLMMs 
revealed that the inclusion of Vocabulary, GCC, or CELF did 
not enhance the model fit (all p > .605). Turning to the non-
autistic group, CELF (χ² (1) = 10.18, p < .01) improved to 
model fit while GCC and Vocabulary did not (both p > .521). 
Adding IQ to the best-fitting model (including CELF effect) 

Explicit Prediction

The best-fitting GAM included no smooth terms nor inter-
actions (all p > .189), suggesting that the impact of Trial is 
linear and that there is no significant difference in partici-
pants accuracy curves across trials between groups.

The best-fitting GLMM showed a significant Group 
effect (χ² (1) = 7.29, p < .01). Post-hoc pairwise comparisons 
revealed better prediction accuracy for non-autistic children 

Fig. 5 Deterministic block. (a) Means of gaze ratio by Group. (b) Adjusted mean prediction accuracy and 95% CIs by Group

 

Fig. 4 Probabilistic block. (a) Adjusted mean gaze ratio and 95% CIs by Trial Category. (b) Adjusted mean of explicit prediction accuracy and 
95% CIs by Trial Category and Group
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stimulus. By contrast, autistics children’s gaze ratio was at 
chance, indicating no overall preference for either AOI.

Explicit Prediction

The best-fitting GAM included Trial as smooth term (LRT 
(35) = 453.64, p < .001). The curve fitted in Fig. 7 is above 
0.5 during the standard trials, showing that participants accu-
rately predicted the animation during these trials. However, 
the curve drops during each oddball trial and confidence 
interval set to 95% goes below 0.5, suggesting that partici-
pants predicted the animation of the non-animated stimulus 
during these trials. Importantly, Fig. 7 shows that during the 
first oddball trial all participants expected the non-animated 
stimulus to be animated, which confirms a strong spontane-
ous overshadowing effect of the shape feature of the stimuli 
over their filling pattern.

The best-fitting GLMM included the Category X Group 
interaction (χ² (1) = 27.56, p < .001). Post hoc pairwise com-
parisons indicated a greater prediction accuracy during the 
standard trials compared to the oddball trials (z = 10.21, 
p < .001) and a greater Category effect in the non-autistic 
group compared to the autistic group (z = 5.09, p < .001). 
Non-autistic children showed better prediction accuracy 
during the standard trials compared to autistic children 
(z = 3.62, p < .01). There was no group difference for the 
oddball trials (z = 2.41, p = .07). In sum, all participants 
exhibited better prediction accuracy during the standard tri-
als compared to the oddball trials and that non-autistic chil-
dren are better to predict the outcome during the standard 
trials compared to autistic-children. However, as shown in 

increased its fit (χ² (1) = 6.85, p < .01). CELF scores had a 
positive effect (z = 3.99, p < .001), and IQ a negative effect 
(z = -2.66, p < .01) on non-autistic participants’ explicit 
predictive accuracy. Adding SES scores to the best-fitting 
model increased its fit (χ² (1) = 7.10, p < .01). CELF scores 
still showed a positive effect (z = 4.67, p < .001), and SES 
scores a negative effect (z = -3.05, p < .01) on non-autistic 
participants’ explicit predictive accuracy.

Dual Block

Gaze

The best-fitting GAM included no smooth terms nor inter-
actions (all p > .176) suggesting that the impact of Trial on 
participants’ gaze allocation ratio is linear, and that there are 
no significant differences between groups regarding these 
anticipatory gaze curves.

The best-fitting GLMM included Category X Group 
interaction (χ² (1) = 8.97, p < .01). Post hoc analyses indi-
cated a greater gaze ratio during the standard trials com-
pared to the oddball trials (z = 2.61, p < .01), and a greater 
Category effect in the non-autistic group compared to the 
autistic group (z = 3.00, p < .01). However, autistic and 
non-autistic children’ gaze ratios did not differ during the 
standard (z = -2.18, p = .13) or the oddball trials (z = 2.29, 
p = .10). Fitted fixation values, along with the 95% CIs are 
displayed in Fig. 6a: in the standard trials, gaze ratio was 
significantly above 0.5 for children in both groups. In odd-
ball trials, non-autistic children were well below 0.5, indi-
cating that they predominantly fixated the non-animated 

Fig. 6 Dual block. (a) Adjusted mean gaze ratio and 95% CIs by Trial Category and Group. (b) adjusted mean prediction accuracy and 95% CIs 
by Trial Category and Group
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We hypothesized that precision imbalance in autism could 
also yield beneficial effects on learning, particularly in situ-
ations where a salient uncertain association coexists with a 
an overshadowed but more predictive one.

In this study, we investigated anticipatory fixations and 
explicit predictions made by both autistic and non-autistic 
children across three associative learning blocks: a Deter-
ministic, a Probabilistic, and a Dual block. The Dual block 
presented a subtle yet fully predictive cue overshadowed by 
a less predictive salient one. Based on the precision imbal-
ance theory of autism, we hypothesized that autistic chil-
dren would demonstrate more unfruitful update attempts in 
the Probabilistic block, resulting in lower predictive perfor-
mance in that block. We also expected autistic individuals to 
benefit from unexpected events in the Dual block, gradually 
favouring the subtle, yet fully predictive cue. Furthermore, 
we predicted a positive correlation between participants’ 
language abilities and their overall predictive performance, 
along with a negative correlation with unfruitful update 
attempts in the Probabilistic block.

Results from gaze analyses and explicit predictions con-
sistently showed that both autistic and non-autistic children 
accurately predicted the outcome during the standard tri-
als in all three blocks. Our results also show that partici-
pants in both groups expected the non-animated stimulus 
to move during the oddball trials in the Probabilistic and 
Dual blocks. Together these results show that both autistic 
and non-autistic children successfully learned cue-outcome 
associations, and that they based their predictions on the 

Fig. 6b both groups showed the same number of accurate 
predictions (below 0.5) during the oddball trials.

For the autistic group, GCC or CELF did not enhance the 
GLMM model fit (all p > .672). Turning to the non-autis-
tic group, stepwise comparisons of GLMMs revealed that 
CELF significantly increased the model fit (χ² (1) = 9.51, 
p < .01), while Vocabulary and GCC did not (both p > .23). 
CELF scores had a positive effect on non-autistic partici-
pants’ explicit predictive accuracy (z = 3.60, p < .001).

Pattern-based Prediction

Turning to the ‘Pattern-based prediction’ variable, step-
wise comparisons of GLMMs showed that the inclusion of 
Group as predictor did not significantly improve the model 
fit (LR (1) = 0.1.30, p = .255). For both autistic and non-
autistic groups, incorporating Vocabulary, GCC, or CELF 
did not improve the model fit (autistic group: all p > .294; 
non-autistic group: all p >. 225).

Discussion

Recent predictive coding theories propose that autism 
involves atypical weighting of prediction errors during 
learning (Lawson et al., 2017; Palmer et al., 2017; Van de 
Cruys et al., 2014). It has been suggested that this preci-
sion imbalance results in more frequent prior updates in 
autistic individuals, as compared to their non-autistic peers. 

Fig. 7 Dual block. Mean prediction accuracy, per trials, by group; vertical lines correspond to SEMs. The line in bold corresponds to fitted gaze 
ratio adjusted curve, with the shadowed ribbon standing for 95% CIs. Each vertical black line represents an oddball trial
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population (Pesthy et al., 2023; Rybicki et al., 2021; for 
reviews see Cannon et al., 2021; Chrysaitis & Seriès, 2023).

A possible explanation for the lack of updates in autistic 
children in our study could be the absence of reversal con-
tingencies and volatile conditions. It is possible that unex-
pected events in the Probabilistic and Dual blocks were too 
predictable, and that the cue-outcome associations were not 
sufficiently uncertain to induce an overweighting of predic-
tion errors in autistic children (Easdale et al., 2019). The 
lack of updates in autistic children may also be due to an 
excessive discrepancy in salience between cues. Although 
all participants successfully distinguished upside-up and 
upside-down patterns in an additional the discrimination 
task (details in Appendix 1), the overshadowing effect of 
shapes may be too strong to allow participants to capture 
the predictive value of the subtle cue. Future studies should 
investigate the impact of salience competition between cues 
by varying the subtlety of the most predictive cues.

Importantly, even though both autistic and non-autistic 
participants showed learning across all associative contin-
gencies, autistic children made fewer accurate explicit pre-
dictions than their non-autistic peers in all three blocks. As 
this difference was also observed in the Deterministic block, 
we cannot attribute it to a difficulty in learning probabilistic 
associations or to an atypical reaction to prediction errors 
in autistic children. The first potential explanation is that 
autistic children show a weaker influence of prior knowl-
edge on predictive processing. In line with this assumption, 
Greene and colleagues (2019) observed fewer anticipatory 
fixations on predictive stimuli in autistic adolescents com-
pared to their non-autistic peers during a probabilistic asso-
ciative learning task. The authors interpreted these findings 
in light of the hypo-prior accounts of autism (Pellicano & 
Burr, 2012), which suggest a decrease in prior reliance in 
autistic individuals. Under this line of analysis, in our study, 
autistic children may have accurately learned associations 
but demonstrated a reduced impact of this learnings on their 
explicit predictions, resulting in hesitant decision-making 
compared to non-autistic children.

The limited number of trials in each block is another 
potential explanation for the lower predictive accuracy we 
observed in our autistic participants. Previous research has 
shown slower probabilistic learning in autistic compared to 
non-autistic adults (Solomon et al., 2011). Additionally, cat-
egory learning and prototype formation have been observed 
to be slower in autism (Soulière et al., 2011). Therefore, 
it is possible that autistic children require more trials than 
non-autistic ones to establish similar associative strength 
between cue-outcome pairs and create strong and reliable 
priors.

To the best of our knowledge, no study has directly inves-
tigated predictive processing in autistic children through 

salient sound-shape association. This bias towards salient 
and global features during learning diverges from the exten-
sive literature on weak central coherence in autism (Booth 
& Happé, 2018; Happé & Frith, 2006) and aligns with the 
perspective of a preserved influence of global information 
in autism (Van der Hallen et al., 2015). Despite suggestions 
that such influence in autism requires guided attention (Kol-
dewyn et al., 2013), our findings show a spontaneous pref-
erence for global features in autistic children. Although our 
method involves asemantic sounds rather than words, the 
spontaneous preference for global features observed in both 
groups of participants may contrast with studies indicating a 
preference in autistic children to associate new words with 
the colour or pattern of referents rather than with the global 
shapes favoured by non-autistic children (Hupp, 2015; Potr-
zeba et al., 2015; Tek et al., 2008).

In line with participants’ explicit predictions, anticipa-
tory fixations revealed successful cue-outcome associative 
learning, as well as strong reliance on the salient cue in both 
the autistic and non-autistic groups. The anticipatory gaze 
behaviour did not differ between the two groups during the 
Deterministic and Probabilistic blocks, and participants in 
both groups made anticipatory fixations on the animated 
stimulus during the standard trials of the Dual block. How-
ever, while non-autistic children showed a clear attentional 
preference for the non-animated stimulus during the odd-
ball trials of the Dual block, the autistic children’s gaze ratio 
revealed no clear preference between the two stimuli. This 
finding could suggest reduced associative strength during 
the Dual block in the autistic group. However, given the 
clear preference of autistic children for the animated stimu-
lus during standard trials, this result could also imply the 
detection of pattern change between shapes during oddball 
trials, resulting in attentional exploration of both stimuli.

Contrary to our hypothesis, autistic children did not 
make more unfruitful update attempts than non-autistic 
children during the Probabilistic block. Furthermore, autis-
tic or non-autistic participants do not seem to have achieved 
a fruitful learning update in favour of the subtle cue at the 
end of the Dual block, as they did not show a higher num-
ber of predictions on the animated stimulus compared to the 
non-animated stimulus during the final oddball trials. These 
findings challenge the idea of a greater rate of priors’ update 
due to atypical weighting of prediction errors in autistic 
versus non-autistic individuals. While this latter hypoth-
esis is supported by studies demonstrating over-adaptation 
of precision weighing, higher learning rates, and faster 
learning updates in autistic adults (Allenmark et al., 2021; 
Goris et al., 2022; Lawson et al., 2017; Sapey Triomphe et 
al., 2021; Thillay et al., 2016), the literature also includes 
mixed results, with a growing number of studies reporting 
no evidence of an overweighting of prediction errors in this 
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children (Borovsky et al., 2012; Mani & Huettig, 2012; 
Reuter et al., 2018, 2019), we found no relationship between 
participants’ language indexes and their anticipatory fixa-
tions. Therefore, the observed positive correlation between 
explicit prediction and language proficiency in non-autistic 
children may not solely stem from associative learning or 
predictive performances. It could be attributed to higher-
order skills, including metacognitive processing and stra-
tegic decision-making, which may be useful in explicit 
associative learning, essential for advanced language devel-
opment (Teng, 2022; Teng et al., 2021), but not necessar-
ily engaged in spontaneous gaze anticipation. Surprisingly, 
language proficiency did not correlate with explicit predic-
tive performances in autistic participants, suggesting poten-
tial differences in the underlying mechanisms of language 
in autism compared to typical development (Kissine et al., 
2023). Further research is needed to explore the roles of 
associative learning and predictive processing in the lan-
guage development of autistic children.

The strengths of our method are its simplicity and brev-
ity, allowing for reliable data collection with minimal bias 
from fatigue or inattention. Additionally, this method, com-
bining explicit and implicit predictive behaviours, can eas-
ily be extended to various populations, including adults and 
individuals with other conditions. However, this study has 
several limitations, two of which have not been discussed 
yet. Our sample does not represent the entire autism spec-
trum, limiting generalization to verbal autistic individuals 
aged 9 to 16. Additionally, our sample size of twenty-three 
participants per group is rather limited. Addressing these 
limitations is crucial for future research to enhance the 
robustness and applicability of our findings.

In conclusion, the study revealed evidence of cue-out-
come associative learning in both explicit and implicit mea-
sures, along with a strong overshadowing effect of stimulus 
shape relative to stimulus filling pattern, in both autistic and 
non-autistic children. Contrary to our predictions, autistic 
children did not update their associative learning in favour 
of a subtler but fully predictive cue after experiencing pre-
diction errors. Surprisingly, their explicit predictive per-
formances were lower than those of non-autistic children 
in both deterministic and probabilistic associative learning 
tasks. These findings challenge the predictive coding view 
of autism and underscore the importance of considering 
autistic performance in sound-image associative learning. 
Our data also suggest different relations between predictive 
processing and language proficiency in autistic and non-
autistic children.
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sound-image associations. Therefore, the differences in 
predictive accuracy between groups observed in our study 
could result from specific associative learning challenges in 
autism, such as sound-picture mapping, rather than atypical 
predictive processing or statistical learning impairment. This 
interpretation is in line with studies showing atypical word-
mapping in autistic children (Hartley et al., 2014, 2019), 
despite preserved statistical learning abilities (Habeig et al., 
2017). Yet, sound-image associations are frequently used to 
investigate precision imbalance during probabilistic learn-
ing in autistic adult (Lawson et al., 2017; Sapey-Triomphe 
et al., 2021, 2022). Future studies using associative learning 
tasks to investigate predictive processing should incorporate 
deterministic designs as control conditions to differentiate 
associative learning and predictive abilities in autism.

It is worth remembering that although the autistic chil-
dren made less accurate explicit predictions than non-autis-
tic children, they learned the associations in all the different 
contingencies. Moreover, no significant difference between 
autistic and non-autistic children in anticipatory fixations 
emerged in the Deterministic and Probabilistic blocks. As 
previously mentioned, these results may indicate a dif-
ference between competence and performance in autistic 
children. Autistic participants may present a spontaneous 
learning ability as accurate as their non-autistic peers but 
show reduced performance when explicitly asked to predict 
outcomes. Lower predictive accuracy in autistic children 
might result from the inherent symptomatology of autism, 
such as motor and movement planning issues (Nazarali et 
al., 2009), potentially leading to difficulties in accurately 
pressing the correct key despite accurate predictive process-
ing. Such discrepancy between explicit and implicit predic-
tive processing could also result from distinct mechanisms 
underlying low-level spontaneous predictions and more 
conscious predictions that involve decision making. Such a 
distinction merits further investigation.

Finally, contrary to our hypothesis, we found no corre-
lation between the number of update attempts during the 
Probabilistic block and language indexes in autistic chil-
dren. This result challenges the idea that atypical language 
development in autism is linked to a higher rate of unfruit-
ful prior updates during learning. However, in line with our 
prediction, the vocabulary level of non-autistic participants 
was positively related with explicit predictions during the 
Probabilistic block, and CELF scores were positively asso-
ciated with explicit predictions during the Deterministic and 
Dual blocks. These findings are line with previous research 
indicating a positive relation between predictive behaviour 
and language proficiency in typically developing individu-
als (Borovsky et al., 2012; Mani & Huettig, 2012).

However, in contrast to prior studies linking predictive 
gaze processing to language skills in typically developing 
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